Quiz 5 – Solutions

Dr. Samir Donmazov

1. Complete* the partial sentence below into a precise definition for, or a precise mathematical characterization of, the italicized term:

Suppose $m, n \in \mathbb{Z}_{>0}$. A linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$ is ...

Solution: A function $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation if, for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ and all $\alpha \in \mathbb{R}$,

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 and $T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$.

Equivalently, for all $a, b \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$,

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}).$$

2. Let L be a line through the origin in \mathbb{R}^2 . Consider the mapping

$$\mathbb{R}^2 \xrightarrow{\pi_L} \mathbb{R}^2$$
 $\vec{x} \mapsto$ "the projection of \vec{x} onto L ."

(a) Write a formula for $\pi_L(\vec{x})$ using the dot product and a unit vector \vec{u} in the direction of L.

Solution: If \vec{u} is any unit vector pointing along L (so $||\vec{u}|| = 1$), then the orthogonal projection of \vec{x} onto L is

$$\pi_L(\vec{x}) = (\vec{x} \cdot \vec{u}) \, \vec{u}.$$

(b) Using the definition of linear transformation, prove that π_L is a linear transformation.

Solution: Let \vec{u} be as above with $||\vec{u}|| = 1$. For any $\vec{x}, \vec{y} \in \mathbb{R}^2$ and any $\alpha \in \mathbb{R}$,

$$\pi_L(\vec{x} + \vec{y}) = ((\vec{x} + \vec{y}) \cdot \vec{u}) \ \vec{u} = (\vec{x} \cdot \vec{u} + \vec{y} \cdot \vec{u}) \ \vec{u} = (\vec{x} \cdot \vec{u}) \ \vec{u} + (\vec{y} \cdot \vec{u}) \ \vec{u} = \pi_L(\vec{x}) + \pi_L(\vec{y}),$$

and

$$\pi_L(\alpha \vec{x}) = ((\alpha \vec{x}) \cdot \vec{u}) \vec{u} = \alpha(\vec{x} \cdot \vec{u}) \vec{u} = \alpha \pi_L(\vec{x}).$$

We used bilinearity of the dot product in each step. Hence π_L satisfies additivity and homogeneity, so π_L is linear.

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Let $\mathcal{I}([0,1])$ denote the set of integrable functions on [0,1]. The map $I:\mathcal{I}([0,1])\to\mathbb{R}$ defined by

$$I(f) = \int_0^1 f(x) \, dx$$

is a linear transformation.

Solution: True. For any $f,g\in\mathcal{I}([0,1])$ and any $a,b\in\mathbb{R},$ we have $af+bg\in\mathcal{I}([0,1])$ and

$$I(af + bg) = \int_0^1 (af(x) + bg(x)) dx = a \int_0^1 f(x) dx + b \int_0^1 g(x) dx = a I(f) + b I(g).$$

This uses linearity of the (Riemann or Lebesgue) integral. Therefore I is linear.